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Abstract. Textural features extracted from co-occurrence matrices have
shown quite effective in pattern recognition and image classification al-
gorithms at the expense of a very high computational cost. In this work,
we present a novel implementation on graphics processors (GPUs) for a
fast calculation of parameters based on co-occurrence matrices. Our ap-
proach focuses on CUDA programming for exploiting the parallelism and
the computational power of a GPU and derive high-performance meth-
ods which optimize the use of the video memory hierarchy. Within this
framework, several sparse matrix formats are proposed and analyzed for
a dynamic handling of elements to address the matrix fill-in at run-time.
Experimental results are compared among different strategies and versus
a counterpart implementation running on multicore CPUs.

1 Introduction

Texture analysis methods have been utilized in a wide variety of application
domains, such as quality control, remote sensing, textile inspection, charac-
ter recognition, document processing, medical image analysis and computer vi-
sion [1973,1992, 2007]. Co-occurrence matrices are effective and extensively used
as a tool for discriminating different textures, though they have the disadvan-
tage of a high computational cost. Co-occurrence matrices can be computed at
image-level and at pixel level, by only considering a window around that pixel,
in order to compute image and pixel level texture features, respectively. In this
paper, our focus is per-pixel co-occurrence matrix computation, because it is
much more computationally demanding. In particular, our contribution is in
high-performance implementation of co-occurrence matrices on graphics proces-
sors (GPUs). Clearly most of the optimization techniques we present in this work
is applicable to both per-pixel and per-image co-occurrence matrix computation.
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A co-occurrence matrix represents how often a pixel with the intensity value
i occurs in a specific spatial relationship to a pixel with the intensity value j.
The spatial relationship is defined by a displacement vector d = (dz, dy) where
dr and dy are the displacements in columns and rows of image, respectively.
Each element (i, j) in the co-occurrence matrix is simply the sum of the number
of times that the pixel with value 7 occurred in the specified spatial relationship
to a pixel with value j in the input image (see Figure 1).

The displacement vector establishes the distance apart along a given direction
having co-occuring pixel values. Often only the distances d=1 and 2 pixels are
considered, combined with directions in horizontal, vertical and both diagonals.
The direction in which pixels are traversed for composing the pairs when voting
on co-occurrence matrices is tightly coupled to the way the matrix is stored
through compressed formats when using sparse matrices. Along this paper, we
focus on the d = (1,0) rowwise storage of matrix to illustrate our methods, that
could be straightforwardly adapted to the d = (0,1) columnwise storage.
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Fig. 1. A 8x8 co-occurrence matrix computed from a 3x3 window on a particular pixel
of a 16x16 image, and its subsequent storage using a coordinate format.

2 Sparse formats for co-occurrence matrices

The co-occurrence matrix for a given pixel is usually computed for a square
window of neighbor pixels centered on it, with the size of the output matrix
given by the number of intensity levels in the image (typically 256x256 unless
the matrix be discretized). This often leads to a sparse co-occurrence matrix (see
Figure 1). For example, using a window size of 64x64 pixels, at least 93.75% of the
256x256 elements of a co-occurrence matrix are zeros. Optimizing the memory
usage is of great interest on a GPU under CUDA programming, since only a
very small ultra-fast memory is available per CPU-core or per multiprocessor of
recent GPU cards.

A number of storage formats are available as sparse representations [1991].
For our purposes, we have to select a format fulfilling two major premises: (1)
To be simple enough to be adapted to the way the GPU computes, and (2) to be
compact enough to store as many co-occurrence matrices as possible. This way,
a number of threads may run in parallel on the GPU with each thread storing
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its results on a local output. In our framework, the overall computational load is
decomposed by partitioning the window to process into a number of threads, say
N. Each thread concurrently updates its own local co-occurrence matrix and at
the end of the computation a reduction process takes place to build the global
co-occurrence matrix from the local ones in log(IV) stages as shown in Figure 2.
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Fig. 2. The way co-occurrence matrices are computed during our GPU implementation
using CUDA.

Among available sparse matrix representations, the most commonly used
ones are Compressed Row/Column Storage (CRS/CCS) formats [1994]. These
are a good choice when the algorithm does not create new nonzero elements
at run-time (fill-in), which does not suite well with our application. Therefore,
for the initial implementation we have chosen to use a coordinate format, where
nonzeros are stored on an array in row-wise order and are accompanied by its pair
of coordinates (i,j) in other two additional vectors (see Figure 1). In addition,
we maintain an index which emulates a linked list to keep track of the first
free position within the data vector. Other sparse formats are currently under
development and will be analyzed in the final version of the paper as well.
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Table 1. Execution times (in msecs.) for the computation of a 256x256 co-occurrence
matrix on a single pixel under different window sizes.

Window | CPU on GPU on dense GPU on sparse matrices Maximum Sparse GPU
size dense matrices stored | stored in both memories | sparsity rate | speed up | speed up
matrices | in global mem. (shared + global) (% nonzeros) | on GPU | vs. CPU
4x4 1.36 7.61 0.06 + 0.04 = 0.10 0.0244% 76.10x 13.60x
8x8 2.82 7.62 0.06 + 0.10 = 0.16 0.0976% 47.62x 17.62x
16x16 2.82 7.58 0.28 + 0.11 = 0.39 0.3906% 19.43x 7.23x
32x32 3.04 7.63 0.29 + 0.45 = 0.74 1.5625% 10.31x 4.10x
64x64 3.08 7.76 0.84 + 0.90 = 1.74 6.2500% 4.45x% 1.77x
128x128 2.94 8.54 5.89 4+ 1.81 = 7.70 25% 1.10x 0.38x
256x256 2.96 9.19 42.90 + 3.59 = 46.49 100% 0.19x 0.32x

Table 2. Execution times (in msecs.) for the computation of a co-occurrence matrix
on a single pixel under different discretization levels. The window size is 16x16 pixels.

Size of CPU on GPU on dense GPU on sparse matrices Maximum Sparse GPU
C0-0C. dense matrices stored | stored in both memories | sparsity rate | speed up | speed up
matrix | matrices | in global mem. (shared + global) (% nonzeros) | on GPU | vs. CPU
16x16 2.82 0.23 0.19 4+ 0.02 = 0.21 100% 1.09x 13.42x
32x32 2.82 0.31 0.25 4+ 0.02 = 0.27 25% 1.14x 10.44x
64x64 2.82 0.67 0.26 4+ 0.02 = 0.28 6.25% 2.39x 10.07x
128x128 2.82 2.09 0.29 4+ 0.04 = 0.33 1.56% 6.33x 8.54x
256x256 2.82 7.58 0.28 4+ 0.11 = 0.39 0.39% 19.43x 7.23x

3 Empirical results

Preliminary results on a state-of-the-art computer equipped with a Nvidia GeForce
8800GTX GPU and a Intel Core 2 Duo CPU are given in Table 1 for different
window sizes and in Table 2 varying the discretization level of the output ma-
trix. Factor gains increase on the GPU with the sparsity rate, reaching up to 50x
when the matrix contains only 0.1% of nonzero values. On the contrary, numbers
were worse in the CPU using sparse matrices, and therefore are not represented.
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