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1 Introduction

Driven by the ever-growing demands of game industry, Graphics Processing
Units (GPUs) have evolved from application-specific units for 3D scene ren-
dering into highly parallel and programmable multipipelined processors, that
can satisfy extremely high computational requirements at low cost. Their num-
bers are impressive. Today’s fastest GPUs can deliver a peak performance in the
order of 500 Gflops [11], more than four times the performance of the fastest x86
quad-core processor [7].

This astonishing performance has recently captured the attention of many
developers and researchers in different areas, who are using GPUs as commodity
data-parallel coprocessors to speed up their own applications [8]. This activity
has been christened as General Purpose Computing on GPUs (GPGPU) [6].
Manufacturers in turn, driven by the increasing activity of this community,
have developed new software interfaces that facilitate GPU programmability
as general purpose parallel coprocessors. The most representative examples are
NVIDIA’s CUDA [5] and AMD’s Brook+ [1].

This new scenario should redirect the efforts in GPGPU research from ad-
hoc porting of applications, to the development of new compilation strategies
that enable automatic mapping of sequential code. In this context, state-of-the-
art tools for automatic recognition of program constructs, such as the XARK
compiler framework [2, 4], provide a high level hierarchical representation of the
program with valuable semantic information for the mapping process. However,
we still need to define some performance metrics and heuristics in order to steer
this mapping, and extend the compiler framework accordingly.

In this paper we perform several experiments aimed at analyzing the main
factors behind GPU’s performance in an attempt to define those heuristics. As
a driven example we have used a real world algorithm [9] that exhibits some of



the computing patterns present in many scientific and image processing appli-
cations 3.

In the final contribution we will conclude with some hints about the extension
of the XARK compiler framework for automatic GPGPU.

2 Compiler Support for Mapping Sequential Code onto

Modern GPU Hardware

Today’s optimizing compilers represent program behavior by means of several
graphs that capture information at the statement and/or at the basic block lev-
els. Well-known examples are the data dependence graph and the dominance
tree. Our approach hinges on the construction of graphs at the kernel level. In
order to recognize these kernels, we use the XARK compiler framework [2–4] as
it provides a general solution to the problem of automatic recognition of program
constructs. Thus, XARK builds a hierarchical representation that decomposes
a program into a set of mutually dependent kernels that capture the behavior
of a code fragment and provide the compiler with information about the com-
putations carried out at runtime on scalar and non-scalar variables. Well-known
examples of kernels are inductions, reductions and array recurrences. We pro-
pose a kernel-level intermediate representation of the program that does not take
into account the characteristics of the target GPU hardware. Thus, in order to
steer the mapping process, some performance metrics and heuristics of the tar-
get GPU hardware need to be defined. In addition, the kernel-level intermediate
representation must be extended to meet the information requirements of these
metrics and heuristics.

3 Performance Limiting Factors of Modern GPU

Hardware

GPU performance is influenced by the architectural organization of the hardware
platform. NVIDIA suggests that achieving the highest GPU occupancy and op-
timizing the use of the memory hierarchy are the two main factors behind GPU
performance. In fact, both of them are related since maximizing the occupancy
can help to cover latency during global memory loads. We present several exper-
iments aimed at analyzing their relative importance. Our results indicate that
code transformations that target efficient memory usage are the major determi-
nant of actual performance. Overall, they ensure the best performance even if
some resources remain underutilized. Therefore, maximizing occupancy should
be examined at a later stage in the compilation process, once data related issues
have been properly addressed.

3 The interested reader can find more information about the driven application, as
well as a description of an ad-hoc mapping in [9].



4 Preliminary Results

We have run several experiments on a NVIDIA GeForce 8800 GTX to study
the influence of different code transformations on both the occupancy and the
memory usage, analyzing their impact on overall performance. Figure 1 sketches
part of our results. In order to maximize occupancy we have tried loop trans-
formations, such as loop splitting, that reduce the pressure on shared resources
and thus maximize occupancy. However, as shown in Figure 1(a), memory band-
width is often the limiting factor. Essentially, any transformation of the original
code has no impact on performance unless key memory issues has been properly
addressed.
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Fig. 1. Influence of memory optimizations. (a) Using textures outperforms any occu-
pancy related optimization. (b) Using shared memory alone does not solve alignment
problems. A smart combination of textures and shared-memory provides the best per-
formance

NVIDIA’s programming guidelines stress the importance of exploiting the
on-chip shared memory. The results in Figure 1(b) highlight that in practice, tex-
ture caches can provide similar or even higher benefits, despite having a higher
access latency than shared memory. This is a consequence of memory alignment
problems. Indeed, we have found that this is one of the most crucial aspects of
memory optimization. At the expense of some data transfers overheads, access-
ing data through texture caches always guarantee aligned accesses. Although a
similar access pattern may potentially be implemented using shared memory,
it will involve (at the programming or compiler level) a complex analysis and
substantial code transformations.

Summing up these experiments, (1) alignment should be target early in the
compilation process and (2) if it remains an issue combining textures and shared
memories in a smart way leads to the best performance.

In the final contribution we will include more elaborated discussion of these
results as well as some hints about the extension of kernel-level intermediate



representation in order to provide useful information for the efficient mapping
of sequential codes onto GPU architectures.
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