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Abstract. The non-perturbative approaches have become important
tools in simulations of molecular nanomagnets. Here the direct, numer-
ically exact diagonalization and quantum transfer matrix (QTM) tech-
niques, applicable to Heisenberg spin systems modeling molecular-based
rings, are described. The models include the single-ion anisotropy, alter-
nating nearest-neighbor bilinear exchange coupling and the biquadratic
term. We present results obtained for two molecules: Crg and Nijs.
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1 Introduction

Molecular clusters composed out of transition-metal ions and shielded from each
other by a shell of organic ligands act as individual quantum nanomagnets. The
quantum microscopic properties of such molecules can be then observed on a
macroscopic scale. This makes them very interesting objects of theoretical and
experimental investigation. Their envisaged practical applications in a future
quantum computer [1] or as storage devises have stimulated the development of
efficient theoretical tools. Phenomenological modeling of such molecules is based
on the assumption that the intercluster interactions are negligible and the prop-
erties of a system are determined by strong intracluster exchange interactions.
In the first approximation a pure Heisenberg Hamiltonian is used. However, the
experimental findings indicate more complex interactions, suggesting inclusion

* Supported by NoE MAGMANet - EU project No NMP3-515767



of alternating couplings, single-ion anisotropy, second neighbors interactions or
exchange anisotropy. A standard approach to these, more complex Hamiltonians
is based on perturbative techniques [2], which however have natural limitations.
In this paper we present two numerically exact non-perturbative methods ap-
plied to molecular rings: exact diagonalization and quantum transfer matrix
technique.

2 Spin models

To model the molecular rings we use the following quantum spin (s = 3/2 for
Crg and s = 1 for Nij») Hamiltonian:

n/2
H = Z (J082j71 - 825 + JeSZj . 82j+1)
7j=1
+ Z (D(s3)* + gunB (s sin6 + 3 cos b)) , (1)
=1

where J° are nearest-neighbor exchange integrals for ‘odd’ and ‘even’ pairs,
respectively, n is the number of sites D is the (site-independent) single-ion
anisotropy, B is the external magnetic field applied in the x — 2z plane and
forming an angle 6 with the z axis. g is the corresponding Landé factor and ug
stands for Bohr magneton. We assume periodic boundary conditions (j +8 = j).
We calculate first the free energy

F=—kgTInZ, Z=Tre ", (2)

and then by numerical differentiation obtain the following thermodynamic quan-

tities 92F 92F
¢ (6T2)B X (6B2>T ®)
the magnetic torque is calculated with the help of the formula:
7= —gup ((S¥) cosf — (S*)sin ) 4)

where (S®) and (S?) are the thermal averages of the total spin components.

3 Numerical methods

In exact diagonalization only non-alternating couplings are taken into account.
The diagonalization is done numerically and exploits the symmetries of the
Hamiltonian, which is invariant with respect to the renumbering of sites

(1,2, ..., N—1, N) > (2,3, ..., N, 1) (5)



generated by the shift operator

P=) ... |5 sksi)(siss... sk | (6)
s sk

and the mirror reflection corresponding to the transformation:
(1,2,..., N—-1, N)»> (N, N—-1,...,2, 1) . (7

As a result the eigenstates of the Hamiltonian obtained are classified by three
quantum numbers (S?, k,r), where —ns < S* < ns is the z component of total
spin, 0 < k < n/2 corresponds to translational invariance and r = £1 is related
to mirror reflection.

The quantum transfer matrix technique applies the Trotter formula to the
exponent of the Hamiltonian (1) expressed as a sum of two non-commuting
Hamiltonians H° and #®. Then the partition function can be written as:

7= lim Zpn = lim Tr (e n™ e n)". ®)
m—r0o0 m—r0o0
The symmetries of the H° and H® allow us to express Z,, with the help of a
single sparse matrix V and the shift operators P, P*

T =Te [(VPIP) "2 Pt (vPiph) "2 p] " )

The trace in (9) is calculated over 4% dimensional spin space. The thermodynamic
quantities are calculated for different values of m and then extrapolated to m —
00

4 Results and conclusions

The exact diagonalization technique is applied to the 12 s = 1 spin ring. The
energy levels are calculated as a function of the anisotropy D for B = 0 and as a
function of the magnetic field B aligned with the z axis for a fixed value of D. As
expected, with increasing magnetic field the magnetisation in the ground state
changes discontinuously from 0 to —4 with characteristic unit steps at crossing
fields. Yet for higher fields the energy levels with magnetisation —5 and —6 never
become the ground state since they have been ’crossed’ before by the level with
the magnetisation equal to —7.

Using the quantum transfer matrix technique the susceptibility and the spe-
cific heat were calculated for a wide range of temperatures. Both these quantities
appear insensitive to the bond alternation as long as the mean value of the cou-
plings J is fixed and the alternation AJ = [J° — J¢| > 0.4J. We have also
obtained results for the magnetic torque in low temperatures (see fig. 2).

The exact diagonalization and quantum transfer matrix technique give highly
precise reliable results also for more complex systems for which the perturbative
methods are usually used. A comparison of the quantum transfer matrix results,
especially those obtained for the torque with the exact diagonalization should
shed more light on the problem of S-mixing in molecular rings.
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Fig. 1. The field-dependence of the lowest-lying states (M = —S) relative to the ground
state energy for the antiferromagnetic ring of 12 spins s = 1 at the anisotropy D/|J| =
—0.1
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Fig. 2. The magnetic torque of Crg, for T = 50mK and 6 = 6°
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