Exposing Inner Kernels and Packed Storage for
Fast Dense Linear Algebra Codes*

José R. Herrero**

Computer Architecture Department
Universitat Politecnica de Catalunya
Barcelona, Spain
josepr@ac.upc.edu

Abstract. Efficient execution on processors with multiple cores requires
the exploitation of parallelism within the processor. For many dense lin-
ear algebra codes this, in turn, requires the efficient execution of codes
which operate on relatively small matrices. Efficient implementations of
dense linear algebra codes exist (BLAS libraries). They rearrange (pack)
data internally so that data can be streamed from the level 2 cache and
often get excellent performance when used with medium and large ma-
trices. However, calls to BLAS libraries introduce large overheads when
they operate on small matrices. High performance implementations of
dense linear algebra codes can be achieved by replacing calls to stan-
dard BLAS libraries with calls to specialized inner kernels which work
on small data submatrices which are already packed in the proper way.

Key words: Inner kernels, packed storage, register blocks.

1 Introduction

1.1 Packed Storage for Register Blocking

In [1], Gustavson states the need to reorder square blocks so that data loaded into
the level 1 cache can enter the register file in an optimal way. Such approach
was followed in the creation of a high performance implementation of matrix
multiplication on the IBM Power PC 440 [2]. A similar approach is also used in
Goto’s library [3] for a variety of platforms.

1.2 Specialized Inner Kernels

The specialization of the inner kernels avoids performing unnecessary operations
repetitively. In addition, it simplifies the code allowing for more opportunities
for automatic optimization. Working with simple square blocks it is possible to
produce efficient inner kernels with the help of an optimizing compiler.

* This work was supported by the Ministerio de Educacién y Ciencia of Spain
(TIN2007-60625).
** Currently on sabbatical leave at Barcelona Supercomputing Center

2 José R. Herrero

When these kernels are called directly from linear algebra codes which store
matrices using non-canonical data structures the overhead is very low. This
happens because there are no costs associated to copying data and checking
certain parameters.

In [4], Herrero shows that the performance obtained from the resulting Cholesky
factorization approaches that of a hand-optimized implementation in which most
representative parts of the code are written in assembly code and data is packed
for efficient use of the register file (Goto BLAS).

1.3 Non-Canonical Storage for Multi-core Architectures

Recent work on the parallelization of dense linear algebra codes on multi-core
architectures uses new data structures for matrices. Basically, matrices are stored
as a set of submatrices which are kept as square blocks [5-7]. Such codes either
call BLAS routines or vanilla kernels and could benefit from using specialized
inner kernels with packed storage.

2 Specialized Kernels and Register Blocking

In this talk we will present ongoing work on the modification of the Small Matrix
Library (SML) [8,9] developed previously by the author. New routines operate
on small matrices stored in a way that allows for register blocking and facilitates
data streaming. Resulting codes can avoid most of the overhead and have high
performance.

References

1. Gustavson, F.G.: Algorithm Compiler Architecture Interaction Relative to Dense
Linear Algebra. Technical Report RC23715 (W0509-039), IBM, T.J. Watson
(September 2005)

2. Chatterjee, S., Bachega, L.R., Bergner, P., Dockser, K.A., Gunnels, J.A., Gupta,
M., Gustavson, F.G., Lapkowski, C.A., Liu, G.K., Mendell, M., Nair, R., Wait,
C.D., Ward, T.J.C.;, Wu, P.: Design and exploitation of a high-performance SIMD
floating-point unit for Blue Gene/L. IBM Journal of Research and Development
49(2/3) (March/May 2005) 377-391

3. Goto, K., van de Geijn, R.A.: Anatomy of a high-performance matrix multiplication.
ACM Transactions on Mathematical Software 34(3) (September 2007)

4. Herrero, J.R.: New data structures for matrices and specialized inner kernels: Low
overhead for high performance. In: Int. Conf. on Parallel Processing and Applied
Mathematics. (PPAM’07). LNCS (To appear). Lecture Notes in Computer Science,
Springer-Verlag (September 2007)

5. Chan, E., Zee, F.V., van de Geijn, R., Quintana-Orti, E.S.,; Quintana-Orti, G.:
Satisfying your dependencies with SuperMatrix. In: IEEE Cluster 2007. (2007)
92-99

6. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear alge-
bra algorithms for multicore architectures. CoRR abs/0709.1272 (2007) informal
publication.

Title Suppressed Due to Excessive Length 3

7. Perez, J.M., Badia, R.M., Labarta, J.: A flexible and portable programming model
for SMP and multi-cores. Technical report, Barcelona Supercomputing Center -
Centro Nacional de Supercomputacién (June 2007) Technical report 03/2007.

8. Herrero, J.R., Navarro, J.J.: Automatic benchmarking and optimization of codes: an
experience with numerical kernels. In: Int. Conf. on Software Engineering Research
and Practice, CSREA Press (June 2003) 701-706

9. Herrero, J.R., Navarro, J.J.: Compiler-optimized kernels: An efficient alternative
to hand-coded inner kernels. In: Proceedings of the International Conference on
Computational Science and its Applications (ICCSA). LNCS 3984. (May 2006) 762—
771

