Exposing Inner Kernels and Packed Storage for
Fast Dense Linear Algebra Codes*

José R. Herrero**

Computer Architecture Department
Universitat Politecnica de Catalunya
Barcelona, Spain
josepr@ac.upc.edu

Abstract. Efficient execution on processors with multiple cores requires
the exploitation of parallelism within the processor. For many dense lin-
ear algebra codes this, in turn, requires the efficient execution of codes
which operate on relatively small matrices. Efficient implementations of
dense linear algebra codes exist (BLAS libraries). They rearrange (pack)
data internally so that data can be streamed from the level 2 cache and
often get excellent performance when used with medium and large ma-
trices. However, calls to BLAS libraries introduce large overheads when
they operate on small matrices. High performance implementations of
dense linear algebra codes can be achieved by replacing calls to stan-
dard BLAS libraries with calls to specialized inner kernels which work
on small data submatrices which are already packed in the proper way.
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1 Introduction

1.1 Packed Storage for Register Blocking

In [1], Gustavson states the need to reorder square blocks so that data loaded into
the level 1 cache can enter the register file in an optimal way. Such approach
was followed in the creation of a high performance implementation of matrix
multiplication on the IBM Power PC 440 [2]. A similar approach is also used in
Goto’s library [3] for a variety of platforms.

1.2 Specialized Inner Kernels

The specialization of the inner kernels avoids performing unnecessary operations
repetitively. In addition, it simplifies the code allowing for more opportunities
for automatic optimization. Working with simple square blocks it is possible to
produce efficient inner kernels with the help of an optimizing compiler.
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When these kernels are called directly from linear algebra codes which store
matrices using non-canonical data structures the overhead is very low. This
happens because there are no costs associated to copying data and checking
certain parameters.

In [4], Herrero shows that the performance obtained from the resulting Cholesky
factorization approaches that of a hand-optimized implementation in which most
representative parts of the code are written in assembly code and data is packed
for efficient use of the register file (Goto BLAS).

1.3 Non-Canonical Storage for Multi-core Architectures

Recent work on the parallelization of dense linear algebra codes on multi-core
architectures uses new data structures for matrices. Basically, matrices are stored
as a set of submatrices which are kept as square blocks [5-7]. Such codes either
call BLAS routines or vanilla kernels and could benefit from using specialized
inner kernels with packed storage.

2 Specialized Kernels and Register Blocking

In this talk we will present ongoing work on the modification of the Small Matrix
Library (SML) [8,9] developed previously by the author. New routines operate
on small matrices stored in a way that allows for register blocking and facilitates
data streaming. Resulting codes can avoid most of the overhead and have high
performance.
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