
Automatic Program Parallelization
for Multicore Processors

Jan Kwiatkowski, Radoslaw Iwaszyn

Institute of Applied Informatics, Wrocław University of Technology
50-370 Wrocław, Wybrzeże Wyspiańskiego 27, Poland

fax: (+48)(71) 3211018, tel: (+48)(71) 3203602

Abstract: With the advent of multi-core processors the problem of designing
application that efficiently can utilized it’s performance stay more and more
important. When developing program for the processor with some number of
processing units it is not recommended to split it into more processes then the number
of available units. It can lead even to decreasing of performance due to frequently
context switches of the working processes. The paper deals with the short description
of the hardware independent tool that in automatic way parallelized serial programs
depending on the number of available processing units by creating the proper number
of threads that can be execute in parallel.

1. Introduction

Nowadays multicore processors stay more and more popular for commercial as well
as for home usage. It is caused by decreasing cost of it’s production and by physical
limitations in production of classical processors. It becomes more and more hard to
enhance processor speed, therefore multiplying processing units seems to be the best
way to achieve larger performance. Developing programs for these processors
required from the programmers some specific knowledge about the processor
architecture and parallel programming. On the other hand different operating systems
provides mechanisms which allows efficiently used more than one processing unit but
still the knowledge related with processor architecture is needed. The next problem
that should be solved in this case is a problem with the efficient program execution.
When the number of program blocks that can be executed in parallel is larger then the
number of available processing units, it can happened that it leads even to decreasing
the performance due to frequently context switches of the working processes.
Therefore the most suitable situation is when the number of program blocks and
available processing unit is the same. However it causes that program is not portable
be means that during it’s execution on the processor with different number of
processing units, the efficiency can be worse. On the other hand, there are available
tools which helps in program developing, for example SWARM [1], or execution
environment as RapidMind [7]. It takes serial program as the input and then executing
it in parallel using the “virtual machine”. Both of above solutions still require to have
some knowledge about the processor architecture and parallel programming. As
alternative solution the automatic program parallelization can be used. The paper
deals with the short description of the hardware independent tool that in automatic
way parallelized serial programs depending on the number of available processing
units by creating the proper number of threads that can be executed in parallel.

2. Design overview

Multicore processors gives the opportunity of parallel program execution using the
number of available processing units. In common during programming multicore
processors, the shared memory paradigm is used. To take advantage of these, it is
necessary to develop programs in such way, that there are exactly the same number of
tasks (e.g. threads) and available processing units. Typical serial program can utilize
only one processing unit, then during it’s execution other units are idle. From
technical point of view it is easy to change such program behavior, however taken
into consideration the “program architecture” it is very tough. Moreover, each
situation when threads are created and synchronized can leads to many problems.
Developing parallel programs is potentially risky, because of high possibility of
making mistakes. Identifying these mistakes is not easy due to program behavior can
be different for different it’s executions and depends on the way how system
dispatcher shared processor time, programmer is not able to predict it. Similarly,
much more complicated is the process of identifying and fixing bugs. The reason is
similar as above, however this time, it is hard to predict how processor time will be
shared between working threads and when context of executing will be switched. On
the other hand to take advantage from using multicore processors it is necessary to
modify program code in such way, that the most time consuming calculations (for
example loops) will be executed in parallel as a separate threads when there are no
loop-carried dependence. It is worth to emphasize that dividing program to threads is
not the only possibility of it’s parallel execution. It is also possible to execute process
for each tasks. When doing this it is also necessary to define communication between
processes. Choosing the way of parallelization depends on the available hardware
platform. Regardless of chosen method it is necessary to divide calculation with
respect to each thread. To achieve these algorithms for determining data dependencies
and for building dependency graph are used. It leads to choosing proper order of
executing instructions to ensure that the result is the same as that from the
corresponding serial program.

3. Program Parallelization

The presented tool gives the opportunity of parallel execution of serial programs
using multicore processors. In general, automatic parallelization is made in the
following three steeps:
• Performing a dependence test to detect potential program parallelism
• Restructuring the program into some blocks which can be executed in parallel.

During this step different program transformations are used to obtain the greatest
degree of parallelism in a program.

• Generating parallel code for a particular architecture by scheduling program
blocks on available processing units and then synthesizing a convenient
mechanism for achieving parallelism depending of the used system

It is clear that the last step of above procedure depends on the used system
architecture when the first two are hardware independent. To develop the tool that
will be hardware independent by means that it can be used at different multicore
processors including Cell BE, the following structure of the tool is proposed. The tool

consists of three units. The first is Dependency Analyzer which provides two main
functionalities, it performs loop analysis [2,3] and looks for internal parallelism
within the program instructions (blocks) [5,6]. The second one is Optimiser that
checks the number of available processing units and depending on it’s number
decided how many program blocks can be executed in parallel. These units are
hardware independent. The last unit is Code Generator which is equipped with built in
library used during code generation. These solution gives the opportunity to used the
tool for different hardware platforms by simple changing the library which consists of
functions that depends on the hardware and software platforms.

For the lack of space only the Dependency Analyser will be later described more
deeper. One can find two relations related to the program execution: the first that
express the dataflow and the second, which express the control flow in the program.
Therefore during program parallelization the control dependences have to be
identified and “removed”, when data dependences will be used for determining which
program blocks can be executed in parallel. To avoid the fine grain parallelism which
is not suitable for multicore processors with the limited number of processing units in
the first step the analyser divides all program instruction onto blocks. Program blocks
are disjoint and have exactly one entry and one or more exit points, of course they
may have many predecessors and successors and may even be its own successors [4].
For example such program block as “loop block”, “if-then block”, “if-else block”, etc.
can be distinguished. It is obvious that program blocks constitute a new program and
determining parallelism between program blocks is much more suitable than between
program instructions. Using dataflow and control relations the dependence graph for
the program divided onto blocks as well as separate graphs for different blocks are
created. Then firstly, the possibility of loop parallelization is checked (currently only
for “for loop”) by determining if flow, output and anti dependences exist, later when
parallelisation of loop is possible the dependence distance is calculated to determined
how many treads can be created, the number of treads used during program execution
are determined by the Optimizer. To optimized loop parallelization process four
different loop transformation: loop splitting, loop distribution, loop unrolling and loop
reversal are performed. In the next tool version more transformation will be taken into
consideration and parallelization of other loops will be included. In the second step
the parallelism between program blocks is determined. For this aim the created
dependence graph and control relation created for the program blocks are used.
Depending on the control relation property different program classes have to be
distinguished and different ways of control dependency “removal” have been used.
When control relation creates a linear sequence of program blocks and all blocks have
one exit point only, there are no control dependences and data dependencies specified
at the dependence graph are used for determining, which blocks can be executed in
parallel. In the case when not all block have only one exit point, due to the possible
branches in the program additional conditions related to this property should be fulfill
during dependence analysis. In the most general case when the control relation is only
transitive and reflexive, the possibilities of existing the local symmetry of the control
relation should be taken into consideration.

The tool is implemented in C, as input takes the source code written in C and as
output generate the source code of parallel program in C/C++ language. Then the new
source is compiled by any available C/C++ compiler, the source code doesn't contain

any instructions from outside of the C++ standard. It means that comparing presented
approach with standard program developing process only one additional step,
parallelization with the tool is needed. It is not necessary to introduce any other
modification in the source code of the program. Even if some instructions used in the
program cannot be parallelized they will be leaved without changes. Additionally at
this stage there is made the decision about platform, on which program will be
executed. If platform has to be changed it is not necessary to modify source code. It is
only necessary to parallelized program (using the tool) and compile it (using any
compiler as before). Even when operating system is changed it is not necessary to
modify source code (assuming there are no direct system commands in the code).
Parallelizing is made by executing proper number of threads. It’s number depends on
the available processing units. Threads shares memory available for the process, so it
is not necessary to ensure communication between them in other way than be reading
and writing proper memory cells. Threads synchronization is made by instructions
added to the code by the tool.

4. Conclusions

The project is in current study, therefore presently the tool covers only a part of the
functionalities that normally is supported by the parallelizing compilers. The
prototype still misses a lot of features and not all types of instructions can be
parallelized, they will be implemented in the further versions of the tool. However
experiments performed using the first prototype indicates that the presented tool will
be useful for standard multicore processors as well as for Cell BE. The speedup
received for programs parallelized by the tool has been close to the number of
available processing units. Additionally using the tool, no specific knowledge about
the used processors and experience in the parallel programming are required to build
the parallel application.

References

1. Bader D., SWARM Framework , www.cc.gatech.edu/~bader/papers/SWARM.html
2. Banerjee U., Loop Transformations for Restructuring Compilers: The

Foundation, Kluwer Academic Publishers, 1993.
3. Banerjee U., Loop Parallelization, Kluwer Academic Publishers, 1994.
4. Kwiatkowski J., Automatic program Restructuring, Melecon’91 International

Conference, IEEE Catalog No 91CH2964-5, pp. 1041 - 1044
5. Polychronopoulos C.D. Parallel Programming and Compilers, Kluwer

Academic Publishers, 1988.
6. Randy A., Kennedy K., Optimizing Compilers for Modern Architectures: A

Dependence-Base Approach, Morgan Kaufmann Pub., Academic Press, 2002
7. RapidMind., Development Platform, http://www.rapidmind.com

