
Reordering of sparse matrix for speeding up
computations on multi-core processors

Eun-Jin Im
School of Computer Science,

College of Electrical Engineering and Computer Science
Kookmin University

861-1 Jeongneung-dong Songbuk-gu
Seoul 136-702 Korea

ejim@kookmin.ac.kr

Abstract. The advent of multi-core processors opened a new opportunity and
challenge for high-performance computing. The added level of parallelism can
be fully exploited through an effective optimization of target operation and data
structure. In this paper, we explore reordering techniques for sparse matrix
computations, aiming to improve cache performance as a result of localization
of memory accesses. We use a row and column renumbering scheme such as
Reverse Cuthill-McKee and we also apply a graph partitioning algorithm to
reorder matrix columns and rows.

Keywords: Sparse Matrix, Optimization, Reordering, Multi-core

1 Introduction

The widespread use of multi-core processors promise a greater performance, and the
prospect of increasing number of cores in a single chip is being realized in a breadth-
taking speed. However, the promised performance is not achieved at no cost. The
multi-core architecture allows a hierarchy of parallelism where main memory is
shared between cores in the same chip and a number of such multi-core processors are
connected through a high-speed network. For a single application, in order to fully
achieve maximum performance with such hierarchically parallel platform, the role of
performance tuning is critical.
The sparse matrix operations are basic building blocks in a large group of high
performance computing applications. As in many other operations, the performance
bottleneck of sparse matrix operations is a limited memory bandwidth. The author has
conducted extensive research on register blocking and cache blocking methods for
sparse matrix-vector multiplications in previous research [1],[2]. In this paper, the
author explores reordering techniques for sparse matrix-vector multiplications, aiming
to improve cache performance as a result of localization of memory access within
each core.

2 Preliminary Result

In this research, we try to reduce bandwidth of sparse matrices by reordering the rows
and columns of a sparse matrix. We use a row and column renumbering scheme such
as Reverse Cuthill-McKee[3] and we also apply a graph partitioning algorithm, such
as multilevel partitioning[4], to reorder matrix columns and rows. The table below
summarize our preliminary result of matrix reordering. A suite of sparse matrices are
reordered with Reverse Cuthill-McKee algorithm and the maximum and median
column bandwidths of sparse matrices in the suite are measured and compared before
and after reordering.

Table 1. Bandwidth reduction of sparse matrices after reordering.

matrix max.
bandwidth

before
reordering

max.
bandwidth

after
reordering

bandwidth
reduction

ratio
(max.)

median
bandwidth

before
reordering

median
bandwidth

after
reordering

bandwidth
reduction

ratio
(median)

3dtube.psa 5144 4721 1.09 4157 3608 1.15
494_bus.rsa 442 158 2.80 151 81 1.86
af23560.rua 608 620 0.98 608 608 1.00
bayer02.rua 13874 451 30.76 118 188 0.63
bayer10.rua 13303 1041 12.78 117 372 0.31
bcspwr01.psa 38 15 2.53 13 9 1.44
bcsstk35.rsa 20762 4802 4.32 215 2977 0.07
coater2.rua 1044 953 1.10 290 296 0.98
crystk02.psa 920 1550 0.59 920 854 1.08
crystk03.rsa 1142 1964 0.58 1142 1064 1.07
ct20stif.psa 49350 6842 7.21 1481 3543 0.42
finan512.psa 74724 2525 29.59 29957 2240 13.37
gupta1.psa 21513 21013 1.02 14075 16150 0.87
lhr10.rua 8115 642 12.64 4363 231 18.89
lp_cre_b.rra 76549 60639 1.26 41725 29224 1.43
lp_cre_d.rra 73480 61970 1.19 19765 20764 0.95
lp_fit2p.rra 13524 13512 1.00 6026 6798 0.89
lp_nug20.rra 72220 54972 1.31 46120 38858 1.19
nasasrb.rsa 1733 2072 0.84 569 1109 0.51
onetone2.rua 7664 5607 1.37 357 4019 0.09
pwt.psa 35634 652 54.65 51 246 0.21
rdist1.rua 123 204 0.60 39 102 0.38
rim.rua 22513 934 24.10 186 449 0.41
venkat01.rua 60623 4834 12.54 391 3278 0.12
vibrobox.rsa 12290 8640 1.42 5732 6060 0.95
wang4.rua 1800 1348 1.34 1800 1106 1.63
wm1.rra 272 196 1.39 66 78 0.85

In Table 2, the performance of sparse matrix-vector multiplications are measured and
compared before and after reordering on 2.33 GHz eight-core clovertown Xeon
processor.

Table 2. Performance and speedup of sparse matrix-vector multiplication after reordering.

Matrix Best Performance
before Reordering

(GFlop/s)

Best Performance after
Reordering (GFlop/s)

Speedup

3dtube.psa 2.021 1.948 0.96
494_bus.rsa 0.705 0.759 1.08
af23560.rua 14.043 8.407 0.60
bayer02.rua 3.825 4.153 1.09
bayer10.rua 4.604 4.977 1.08
bcspwr01.psa 0.079 0.108 1.37
bcsstk35.rsa 10.102 7.097 0.70
coater2.rua 6.053 6.107 1.01
crystk02.psa 13.834 9.215 0.67
crystk03.rsa 5.154 4.699 0.91
ct20stif.psa 2.204 2.132 0.97
finan512.psa 5.117 5.628 1.10
gupta1.psa 2.432 2.619 1.08
lhr10.rua 7.254 8.056 1.11
lp_cre_b.rra 5.585 4.821 0.86
lp_cre_d.rra 5.329 4.839 0.91
lp_fit2p.rra 3.57 3.934 1.10
lp_nug20.rra 6.773 7.238 1.07
nasasrb.rsa 2.676 2.282 0.85
onetone2.rua 4.484 3.695 0.82
pwt.psa 5.59 6.35 1.14
rdist1.rua 7.724 7.378 0.96
rim.rua 7.931 8.219 1.04
venkat01.rua 7.902 5.043 0.64
vibrobox.rsa 6.312 4.719 0.75
wang4.rua 5.979 5.91 0.99
wm1.rra 1.373 1.682 1.23

Acknowledgments. The author thanks BeBOP group at U.C.Berkeley for insightful
discussion and for providing multi-core platforms, including eight-core Xeon and Sun
Niagara, for experiment.

References

1. Eun-Jin Im, Katherine A. Yelick and Richard Vuduc: SPARSITY: An Optimization
Framework for Sparse Matrix Kernels. In: International Journal of High Performance
Computing Applications, 18 (1), pp. 135--158 (2004)

2. Eun-Jin Im, Ismail Bustany, Cleve Ashcraft, James W. Demmel and Katherine A. Yelick:
Performance tuning of matrix triple products based on matrix structure. In: Jack Dongarra,
Kaj Madson, Jerzy Wasneiwski (eds.) Applied Parallel Computing. LNCS, vol. 3732, pp.
740--746. Springer, Heidelberg (2006)

3. W.-H. Liu and A.H. Sherman: Comparative Analysis of the Cuthill-McKee and the reverse
Cuthill-McKee ordering algorithms for sparse matrices. In: SIAM J. Numerical Analysis pp.
198--213 (1976)

4. B. Hendrickson and R. Leland : A multilevel algorithm for partitioning graphs. Tech. Rep.
SAND93-1301 Sandia National Laborotories, (1993)

