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Abstract. We consider a parallel method for solving generalized eigen-
value problems that arise from molecular orbital calculation of the bio-
chemistry application. Our focus is to develop scalable parallel imple-
mentations of the method that achieves high performance on multi-core
clusters. In a Rayleigh-Ritz type method using a contour integral (CIRR
method), the computation at each contour involves linear system solu-
tions. We apply a Krylov subspace iterative method with a complete fac-
torization preconditioner. We report parallel performance of our method
on multi-core processors.
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1 Introduction

We consider a method for solving generalized eigenvalue problems that arise from
molecular orbital calculation of the biochemistry application. The prediction of
the electron distribution requires a set of multiple eigenpairs the generalized
eigenvalue problem

Ax = λBx,

where A ∈ Rn×n is symmetric, and B ∈ Rn×n is symmetric positive definite.
Each eigenvalue problem represents a certain part of a physical domain. Our
focus is to develop scalable parallel implementations of the method that provides
high performance on multi-core clusters.

The method for finding eigenpairs in a given physical domain is based on
contour integral presented in [3]. The major advantage of this method is that it
is very suitable for master-worker programming models because iterative process
for constructing subspaces is not required. We recently proposed a Rayleigh-Ritz
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type method [6] and a block variant [1] of the method in order to improve numer-
ical stability. The computation at each contour involves linear system solutions
where the coefficient matrices are derived from A and B. In [2], we found that
a Krylov subspace iterative method in conjunction with a preconditioning using
a complete factorization for an approximated coefficient matrix is effective to
solve such linear systems.

In our eigenvalue solver, a projected matrix pencil with eigenvalues of inter-
est are derived by solution of linear systems. Therefore, if multiple eigenvalues
in certain physical domains are required, corresponding linear systems need to
be solved. Those systems can be solved independently, allowing a variety of par-
allel programming model. Our first parallel implementation of the eigenvalue
solver based on a GridRPC [4, 5] executes a sequential linear system solver for
each of linear systems deployed to a single node of PC clusters. We extend this
discussion to the performance of our eigenvalue solver on PC cluster of multi-
core processors. In particular, we focus on the performance on preconditioned
iterative solvers.

2 A Rayleigh-Ritz type method with a contour integral

In this section, we show an eigenvalue solver using contour integral presented in
[6]. Let (λj , xj), 1 ≤ j ≤ n be eigenpairs of the matrix pencil (A,B). Suppose
that m distinct eigenvalues λ1, . . . , λm are located inside a positively oriented
closed Jordan curve Γ in C.

For a nonzero vector v ∈ Rn, we define

sk :=
1

2πi

∫
Γ

(z − γ)k(zB − A)−1Bv dz, k = 0, 1, . . . ,m − 1, (1)

where γ ∈ R is located inside Γ . Let S := [s0, . . . , sm−1], and let Q := [q1, . . . , qm]
be orthonormal basis obtained from S. Then we have the following theorem([6]).

Theorem 1. If λ1, . . . , λm are distinct and vT Bxj ̸= 0 for 1 ≤ j ≤ m then

span{q1, . . . , qm} = span{x1, . . . , xm}. (2)

This theorem implies that the Galerkin approximation to the matrix pencil
(A,B) on the subspace spanned by [q1, . . . , qm] provides the exact eigenpairs
(λj , xj), 1 ≤ j ≤ m. We apply a Rayleigh-Ritz procedure with the projected
matrices given by Ã = QTAQ and B̃ = QTBQ. The Ritz values of the projected
pencil (Ã, B̃) are eigenvalues of the original pencil (A,B) in Γ and Ritz vectors
are corresponding eigenvectors.

When Γ is a circle with the center γ and the radius ρ, the integral (1) is
approximated via the N -point trapezoidal rule:

ŝk =
1
N

N−1∑
j=0

(ωj − γ)k+1(ωjB − A)−1Bv, k = 0, 1, . . .m − 1, (3)
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where ωj = γ + ρ exp(2πij/N + 1/2) and N is a positive integer. In these com-
putations, we solve the systems of linear equations

(ωjB − A)yj = Bv, j = 0, 1, . . . , N − 1. (4)

Note that the solutions yj , N/2 ≤ j ≤ N − 1 are obtained from the relation
yj = ȳN−j−1. Thus we only need to solve N/2 systems.

A block variant of the method is proposed in [1], which improves numerical
accuracy. In this method, a matrix V := [v1, . . . , vL] ∈ Rn×L is used instead of
v in (4), where v1, . . . , vL are linearly independent, and positive integer L is a
block size. Then the numerical integration (3) is replaced as

Ŝk =
1
N

N−1∑
j=0

(ωj − γ)k+1(ωjB − A)−1BV k = 0, 1, . . . ,M − 1, (5)

with systems of linear equations

(ωjB − A)Yj = BV, j = 0, 1, . . . , N − 1, (6)

where M is a positive integer which is chosen so that M ≥ m/L. Set Ŝ =
[Ŝ0, . . . , ŜM−1], and we obtain a matrix S′ which is constructed from the first
m′ column vectors of Ŝ, where m′ is chosen so that S′ is nonsingular. The
algorithm of the block variant of the CIRR method is as follows:

Algorithm (Block CIRR method)
Input: V ∈ Rn×L, M , N , γ, ρ

Output: (λ̂j , x̂j), 1 ≤ j ≤ m′

1. Set ωj = γ + ρ exp(2πi(j + 1/2)/N), j = 0, . . . , N − 1.
2. Solve (ωjB − A)Yj = BV for Yj , j = 0, . . . , N − 1.
3. Compute Ŝk, k = 0, . . . ,M − 1.
4. Set m′ using the singular value decomposition of Ŝ = [Ŝ0, . . . , ŜM−1],

and set S′ = Ŝ(:, 1 : m′).
5. Construct an orthonormal basis Q from S′.
6. Form Ã = QTAQ and B̃ = QTBQ.
7. Compute the Ritz pairs (λ̂j , x̂j), 1 ≤ j ≤ m′ of the projected

pencil (Ã, B̃).

3 A preconditioner using a complete factorization

When matrices A and B are large, the computational costs for solving systems
of linear equations (6) are dominant in the method. In our application, matrices
have relatively large number of nonzero elements due to the base function of
middle-range interaction of molecules. We apply a Krylov subspace iterative
method with a complete factorization preconditioner presented in [2].
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In this preconditioner, a complete factorization of the approximate matrix Ĉj

for the coefficient matrix Cj := ωjB −A is used. The approximate matrix Ĉj is
obtained from drop-thresholding of the original coefficient matrix Cj . Due to less
nonzero entries in Ĉj than Cj , we expect fewer nonzeroes in the preconditioner
than the matrix factor obtained from factorization of Cj . The drop-thresholding
is defined as follows:

|cij | ≤ max
1≤k,l≤n

(|ckl|) × α ⇒ cij = 0,

where α is a small positive number.
Since systems (6) can be solved independently for j, we solve N/2 systems

CjYj = BV, j = 0, 1, . . . , N/2 − 1

on each node of clusters. Before starting the iterative process of the Krylov
subspace method, the approximate matrix Ĉj is factorized, and then back-
substitutions and matrix-vector products are performed in the iterative process.
These three parts are dominant in computational costs to solve the system. We
will report parallel performance of our method on multi-core processors.
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