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Abstract. Groundwater processes are always multi scale processes. The
understanding of the pore scale is important in order to understand the
system as a whole.
Handling the pore scale in a numerical simulation is not easy. The solid
phase forms a complex shaped geometry and for multiscale simulations a
good approximation of this geometrical shape is crucial to obtain reliable
numerical results, while the interest on the other hand lies only in a coarse
solution, which would allow a smaller number of unknowns.
A new discretization scheme for solving PDEs in complex domains was
developed. It combines the idea of Unfitted Finite Elements with a
Discontinuous Galerkin (DG) Finite Elements discretization. It will be
shown how this approach can be used for numerical upscaling. This al-
lows a more efficient estimation of parameters on the continuum scale
from pore scale processes.
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1 Multiscale Character of Groundwater Processes

When discussing groundwater processes the soil structure must be taken into
account. Soil does not form a homogeneous material, but exhibits an extensive
multiscale structure. Heterogeneities are visible at all scales, down to the pore
scale.

On the pore scale groundwater flow is described by Navier-Stokes equation
through a complicated shaped domain. Fluid velocity in groundwater processes
are usually slow, therefore the flow can be assumed to be laminar and the non-
linear Navier term can be neglected. The governing equation is then the Stokes
Equation:

−µ∆u + ∇p = f in Ω ⊂ IR3

∇·u = 0 in Ω

u = 0 on Γ0 ⊆ ∂Ω

u · n̂ = u on ΓN ⊆ ∂Ω \ Γ0

∂nu + p = p0 on ΓP = ∂Ω \ (Γ0 ∪ ΓN ) ,

(1)
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with the viscosity µ, the velocity u and the pressure p. On the internal bound-
aries, the surface of the grains, no-slip boundary conditions are appropriate. On
the macroscopic boundaries, one may choose between Dirichlet like flux bound-
ary conditions and pressure boundary conditions.

On the macroscopic scale groundwater flow is described by an empirical flux
law introduced in [1]. It is usually referred to as Darcy’s Law :

∇ · j = 0 in Ω ⊂ IR3

j = − 1
µ
κ∇p in Ω

p = p0 on ΓD ⊆ ∂Ω

j · n̂ = j on ΓN = ∂Ω \ ΓD ,

(2)

where j denotes the flux, n̂ is the outwards pointing normal vector, p the pressure,
µ the viscosity and κ the permeability tensor. In numerical simulations, κ often
is assumed to be a diagonal tensor.

The pore velocity u is given by the flux j and the porosity ρ

u =
j

ρ
. (3)

2 Unfitted Discontinuous Galerkin Method

1987 [2] presented a discretization method on an unfitted mesh, using conforming
finite element methods. The finite element mesh does not resolve the geometry.
Boundary conditions along the geometry are enforced weakly using Nitsche’s
method [3]. However, the method itself does only allow first order trial and test
functions. Also methods using first order Lagrange shape functions are not mass
conservative.

We extended this approach using Discontinuous Galerkin methods [4]. This
allows higher order computations. Furthermore for both, Stokes Equation and
Darcy’s law, locally mass conservative Discontinuous Galerkin discretizations do
exist.

Given a domain Ω ⊆ R
d, G is a disjoint partitioning of Ω into sub-domains

G(Ω) =
{

Ω(0), . . . , Ω(N−1)
}

. (4)

The partitioning G is usually based on geometrical properties and the bound-
aries ∂Ω(i) may have a complex shape. On a sub-domain Ω(i) we want to solve
a partial differential equation together with suitable boundary conditions.

The finite element mesh for Ω(i) is constructed, using the triangulation

T (Ω) = {E0, . . . , EM−1} . (5)

Based on (5) the triangulation T (Ω(i)) is defined

T (Ω(i)) =
{

E(i)
n = Ω(i) ∩ En

∣

∣

∣
E(i)

n 6= ∅
}

. (6)
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Note that the elements E(i) can be arbitrarily shaped and in general will not be
convex.

On the fundamental element En ϕn,j ∈ Pk denotes a polynomial, where Pk

is the space of polynomial functions of degree k. The shape functions ϕ
(i)
n,j are

given by polynomials ϕn,j ∈ Pk with their support restricted to E
(i)
n ∈ T (Ω(i)).

The resulting finite element space is defined by

V
(i)
k =

{

v ∈ L2(Ω
(i))

∣

∣

∣
v|

E
(i)
n

∈ Pk

}

(7)

and is discontinuous on the internal skeleton.
For the discretization of the Stokes equation we are using the Discontinuous

Galerkin formulation described in [5]. The discretization leads to a problem that

reads: Find u ∈ V
(i)
k

3
, p ∈ V

(i)
k−1 such that

a(u,v) + J(u,v) + b(v, p) = l(v) ∀ v ∈ V
(i)
k

3
,

b(u, q) = 0 ∀ q ∈ V
(i)
k−1 .

(8)

J(u,v) is a penalty term, there is no physical equivalent to this term. It
vanishes for h → 0 and penalizes jumps in the solution, in order to enforce
a certain continuity of the solution. Dirichlet type boundary conditions (e.g.
no-slip and no-flux) are enforced weakly.

This discretization will then require the evaluation of integrals on these ar-
bitrary shaped elements E(i) and on their surface ∂E(i).

3 Multiscale Simulations

no-flux

p = p0 p = p1

no-flux

Fig. 1. A macroscopic pressure gradient is imposed along the x axis using pressure
boundary conditions and no-flux boundary condition are applied on the all other macro-
scopic boundaries. Micro scale computations with no-slip boundary condition on the
grain surface yield an effective κxx.

Given a domain Ω, the form of a cube, G describes a partition of Ω into
void space Ωv and pore space Ωp (see Fig. 3). Assuming Ω to be the size of an
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REV (Representative Elementary Volume; [6]), effective parameters for Darcy’s
Law on this REV can be computed solving Stokes Equation on the pore space
domain Ωp.

We impose a pressure gradient ∇p along one of the coordinate axis as pressure
boundary condition for (1). On all inner boundaries ∂Ωp \ ∂Ω no-slip boundary
condition is imposed.

The mean velocity

ū =

∫

Ωp

udx · |Ωp|−1 (9)

and the macroscopic porosity ρ̄ = |Ωp|
|Ω| yield an effective permeability

κxx = −
uρ

∇p
. (10)

|Ω| denotes the size of Ω.

4 Implementation

The presented computations are implemented in a generalized framework work
Discontinuous Galerkin Methods on unfitted meshes. It is built onto the DUNE
framework [7, 8]. DUNE is a generic C++ toolbox for grid based methods. The
current results were computed sequentially, but design of the method and the
way it is building on the DUNE interface enables an easy future parallalization.
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